New High-Speed 3-D Imaging Improves Cancer Screenings

Researchers at the Massachusetts Institute of Technology (MIT) have developed a fast 3-d imaging process known as optical coherence tomography (OCT) which can be used to scan the esophagus or colon for early signs of cancer. Traditionally these areas were screened for signs of cancer using basically a small camera on the end of a small tube, however this old technology only allowed medical practitioners to look for cancer on the surface of any tissue they were looking at. With this new 3-d imaging technology OCT scientists are able to not only see what is on the surface but they are also able to peer under the surface of the tissue to find cancer sooner and treat it more quickly. Below the article explains in full detail the specifics of this new system as well as the medical benefits it brings to the field.

ScienceDaily (Aug. 4, 2011) — Researchers at the Massachusetts Institute of Technology (MIT) have developed a new imaging system that enables high-speed, three-dimensional (3-D) imaging of microscopic pre-cancerous changes in the esophagus or colon. The new system, described in the Optical Society’s (OSA) open access journal Biomedical Optics Express, is based on an emerging technology called optical coherence tomography (OCT), which offers a way to see below the surface with 3-D, microscopic detail in ways that traditional screening methods can’t.

Endoscopy is the method of choice for cancer screening of the colon or esophagus. In the procedure, a tiny camera attached to a long thin tube is snaked into the colon or down the throat, giving doctors a relatively non-invasive way to look for abnormalities. But standard endoscopy can only examine the surface of tissues, and thus may miss important changes occurring inside tissue that indicate cancer development.

OCT, which can examine tissue below the surface, is analogous to medical ultrasound imaging except that it uses light instead of sound waves to visualize structures in the body in real time, and with far higher resolution; OCT can visualize structures just a few millionths of a meter in size. Over the past two decades, OCT has become commonplace in ophthalmology, where it is being used to generate images of the retina and to help diagnose and monitor diseases like glaucoma, and has emerging applications in cardiology, where it’s used to examine unstable plaques in blood vessels that can trigger heart attacks.

The new endoscopic OCT imaging system reported by OCT pioneer James G. Fujimoto of MIT and his colleagues, works at record speeds, capturing data at a rate of 980 frames (equivalent to 480,000 axial scans) per second — nearly 10 times faster than previous devices — while imaging microscopic features less than 8 millionths of a meter in size.

At such high speeds and super-fine resolution, the novel system promises to enable 3-D microscopic imaging of pre-cancerous changes in the esophagus or colon and the guidance of endoscopic therapies. Esophageal and colon cancer are diagnosed in more than 1.5 million people worldwide each year, according to the American Cancer Society.

“Ultrahigh-speed imaging is important because it enables the acquisition of large three-dimensional volumetric data sets with micron-scale resolution,” says Fujimoto, a professor of electrical engineering and computer science and senior author of the paper.

“This new system represents a significant advance in real-time, 3-D endoscopic OCT imaging in that it offers the highest volumetric imaging speed in an endoscopic setting, while maintaining a small probe size and a low, safe drive voltage,” says Xingde Li, associate professor at the Whitaker Biomedical Engineering Institute and Department of Biomedical Engineering at Johns Hopkins University, who is not affiliated with the research team.

In OCT imaging, microscopic-scale structural and pathological features are examined by directing a beam of light on a tissue and measuring the magnitude and echo time-delay of backscattered light. Because the amount of light that can be recaptured and analyzed decreases quickly with depth in tissue due to scattering, the technique can generally only be used to visualize sub-surface features to a depth of 1 to 2 millimeters. “However these depths are comparable to those sampled by pinch biopsies and unlike biopsy, information is available in real time,” Fujimoto says. By using miniature fiber optic scanning catheters or probes, either on their own or in combination with standard endoscopes, colonoscopes, or laparoscopes, OCT imaging can be performed inside the body.

In collaboration with clinicians at the VA Boston Healthcare System and Harvard Medical School, the team is investigating endoscopic OCT as a method for guiding excisional biopsy — the removal of tissue for histological examination — to reduce false negative rates and improve diagnostic sensitivity.

“Excisional biopsy is one of the gold standards for the diagnosis of cancer, but is a sampling procedure. If the biopsy is taken in a normal region of tissue and misses the cancer, the biopsy result is negative although the patient still has cancer,” notes Fujimoto, whose team is one of a number of research groups — including at Johns Hopkins University; the University of California, Irvine; Case Western University; and Massachusetts General Hospital — that are actively pursuing the development of smaller, faster endoscopic OCT systems.

Endoscopic OCT requires miniature optical catheters or probes — just a few millimeters in diameter — that can scan an optical beam in two dimensions to generate high-resolution 3-D data sets. Scanning the beam in one transverse direction generates an image in a cross-sectional plane, whereas scanning the beam in two directions generates a stack of cross-sectional images — that is, a 3-D (or volumetric), image.

“This device development is one of the major technical challenges in endoscopic OCT because probes must be small enough so that they can be introduced into the body, but still be able to scan an optical beam at high speeds,” Fujimoto says. “Increasing imaging speeds has also been an important research objective because high-resolution volumetric imaging requires very large amounts of data in order to cover appreciable regions of tissue, so rapid image acquisition rates are a powerful advantage.”

The optical catheter developed by the MIT researchers and their collaborators uses a piezoelectric transducer, a miniature device that bends in response to electrical current, allowing a laser-light emitting optical fiber to be rapidly scanned over the area to be imaged.

So far, the device — which must be further reduced in size, Fujimoto notes, before it can be deployed with the standard endoscopes now used — has only been used in animal models and in samples of human colons that had been removed during surgical procedures; further development and testing of the technology is needed before it can be tested in human patients. “The ultimate clinical utility of new devices must be established by large clinical studies, which assess the ability of the technology to improve diagnoses or therapy,” he says. “This is a much more complex and lengthy task than the initial development of the technology itself.”

Read more here

Share

Posted: August 8th, 2011 under Uncategorized.

RSS Medical Imaging News

  • Research on photoacoustics to detect breast cancer September 22, 2014
    Researchers report a new method to detect breast cancer based on photoacoustics, which could become an alternative to mammography or sonogram, they say. One advantage this method has over X-rays is that no type of ionizing radiation is used. This technology exploits the property of ultrasonic wave generation in tissue when it is illuminated with short, high- […]
  • Ultrasound enhancement provides clarity to damaged tendons, ligaments September 19, 2014
    Ultrasound is a safe, affordable and noninvasive way to see internal structures, including the developing fetus. Ultrasound can also “see” other soft tissue — including tendons, which attach muscles to bone, and ligaments, which attach bone to bone. Now one expert is commercializing an ultrasound method to analyze the condition of soft tissue.
  • Better way to track emerging cell therapies using MRIs September 19, 2014
    The first human tests of using a perfluorocarbon (PFC) tracer in combination with non-invasive magnetic resonance imaging to track therapeutic immune cells injected into patients with colorectal cancer have been reported by scientists.
  • Multiple sclerosis drug candidate shows new promise September 19, 2014
    Positive new data have been released on a drug candidate, RPC1063, for relapsing multiple sclerosis. According to the results from a six-month Phase 2 study of 258 multiple sclerosis patients, the drug candidate reduced the annualized relapse rate of participants with multiple sclerosis by up to 53 percent, compared with placebo. The potential therapy also d […]
  • Down Syndrome helps researchers understand Alzheimer's disease September 18, 2014
    The link between a protein typically associated with Alzheimer’s disease and its impact on memory and cognition may not be as clear as once thought, according to a new study. Researchers looked at the role of the brain protein amyloid-beta in adults living with Down syndrome, a genetic condition that leaves people more susceptible to developing Alzheimer’s.
  • Responsible use of x-rays in dentistry for children September 18, 2014
    Radiologists and dental specialists discuss the implications of the Image Gently campaign in a new article.
  • New microscopy technique yields fresh data on muscular dystrophy September 18, 2014
    A new microscopy technique yields resolution an order of magnitude better than previously possible. Through this new technique, the researchers showed that dystrophin was responsible for regulating tiny molecular fluctuations in calcium channels while muscles are in use. The discovery suggests that a lack of functional dystrophin alters the dynamics of ion c […]
  • PET-CT predicts lymphoma survival better than conventional imaging September 18, 2014
    Positron emission tomography/computed tomography (PET-CT) is more accurate than conventional CT scanning in measuring response to treatment and predicting survival in patients with follicular lymphoma, and should be used routinely in clinical practice, according to new research.
  • CT scan is no more accurate than ultrasound to detect kidney stones, study finds September 17, 2014
    To diagnose painful kidney stones in hospital emergency rooms, CT scans are no better than less-often-used ultrasound exams, according to a clinical study conducted at 15 medical centers. "Ultrasound is the right place to start," researchers said. "Radiation exposure is avoided, without any increase in any category of adverse events, and with […]
  • New non-invasive technique could revolutionize imaging of metastatic cancer September 17, 2014
    A new molecular imaging approach could revolutionize doctors’ ability to see tumors that have metastasized to other sites in the body, including the bones. Preclinical animal models of metastatic prostate cancer helped to pave the way for this new development, which uses bioluminescence, nanoparticles, gene manipulation as components of the exciting new appr […]

News Items

Links