Near-Infrared Imaging System Used As Pancreatic Cancer Diagnostic

Recently scientists from different Boston area institutions have shown that a new type of medical imaging, called optical coherence tomography (OCT), can be used as a  non-invasive means to diagnose the difference between low and high risk cysts within the pancreas. This new technique will allow doctors to treat potentially life threatening situations easily and with a high degree of accuracy.

A team of researchers from four Boston-area institutions led by Nicusor Iftimia from Physical Sciences, Inc. has demonstrated for the first time that optical coherence tomography (OCT), a high resolution optical imaging technique that works by bouncing near-infrared laser light off biological tissue, can reliably distinguish between pancreatic cysts that are low-risk and high-risk for becoming malignant. Other optical techniques often fail to provide images that are clear enough for doctors to differentiate between the two types.

To test the diagnostic potential of OCT imaging, researchers used the technique to examine surgically removed pancreatic tissue samples from patients with cystic lesions. By identifying unique features of the high-risk cysts that appeared in the OCT scans, the team developed a set of visual criteria to differentiate between high and low risk cysts. They then tested the criteria by comparing OCT diagnoses to those obtained by examining thin slices of the pancreatic tissue under a microscope. Their results, described in the August issue of the Optical Society’s (OSA) open-access journalBiomedical Optics Express, showed that OCT allowed clinicians to reliably differentiate between low-risk and high-risk cysts with a success rate close to that achieved by microscope-assisted examinations of slices of the same samples.

Future studies by the research team will focus on improving imaging resolution to further differentiate between solid lesions and autoimmune pancreatitis, and test this technology in vivo. They recently received FDA approval for testing this technology in human patients by using an OCT probe small enough to be inserted into the pancreas through a biopsy needle, which will be guided into suspect masses in the pancreas by endoscopic ultrasound imaging. A pilot clinical study is planned to start within the next couple of months. If in vivo data will prove reliable differentiation between the two types of cysts, a study in a larger number of patients will be planned, contingent on NIH funding and FDA approval.

Read more here

Share

Posted: August 23rd, 2011 under Uncategorized.

RSS Medical Imaging News

  • New window of opportunity to prevent cardiovascular, diseases October 23, 2014
    Future prevention and treatment strategies for vascular diseases may lie in the evaluation of early brain imaging tests long before heart attacks or strokes occur, according to a systematic review conducted by a team of cardiologists, neuroscientists, and psychiatrists.
  • Real-time tracking system developed to monitor dangerous bacteria inside body October 22, 2014
    Combining a PET scanner with a new chemical tracer that selectively tags specific types of bacteria, researchers working with mice report they have devised a way to detect and monitor in real time infections with dangerous Gram-negative bacteria. These increasingly drug-resistant bacteria are responsible for a range of diseases, including fatal pneumonias an […]
  • New treatment resolves hazardous airway complication in child with heart disease October 22, 2014
    In children with a heart condition, lymph can ooze into airways and dry into a rubbery, potentially life-threatening cast. A new, noninvasive treatment cleared this blockage in a 6-year-old boy, clinicians report.
  • Making health services prices available linked to lower total claims payments October 21, 2014
    Searching a health service pricing website before using the service was associated with lower payments for clinical services such as advanced imaging and laboratory tests, according to a study.
  • Detecting cancer earlier is goal of new medical imaging technology October 21, 2014
    A new medical imaging method could help physicians detect cancer and other diseases earlier than before, speeding treatment and reducing the need for invasive, time-consuming biopsies. The potentially lifesaving technique uses nanotechnology and shortwave infrared light to reveal small cancerous tumors and cardiovascular lesions deep inside the body.
  • Exploring x-ray phase tomography with synchrotron radiation October 21, 2014
    X-ray phase tomography is an imaging technique that uses penetrating X-rays to create volumetric views through "slices" or sections of soft biological tissues, such as tumors, and it offers strongly enhanced contrast compared to conventional CT scans. Yet scientists still do not know which X-ray phase tomography methods are best suited to yield opt […]
  • See-through sensors open new window into the brain October 21, 2014
    Developing invisible implantable medical sensor arrays, a team of engineers has overcome a major technological hurdle in researchers’ efforts to understand the brain. The team has now described its technology, which has applications in fields ranging from neuroscience to cardiac care and even contact lenses.
  • See-through, one-atom-thick, carbon electrodes powerful tool to study brain disorders October 20, 2014
    A graphene, one-atom-thick microelectrode now solves a major problem for investigators looking at brain circuitry. Pinning down the details of how individual neural circuits operate in epilepsy and other brain disorders requires real-time observation of their locations, firing patterns, and other factors.
  • Pathological gambling is associated with altered opioid system in the brain October 19, 2014
    All humans have a natural opioid system in the brain. Now new research has found that the opioid system of pathological gamblers responds differently to those of normal healthy volunteers.
  • Smartphone approach for examining progression of diabetic eye disease offers comparable results to traditional method October 18, 2014
    A smartphone-based tool may be an effective alternative to traditional ophthalmic imaging equipment in evaluating and grading severity of a diabetic eye disease, according to a study. The results of the research indicate the lower-cost method could be useful for bringing the service to patients in isolated or underserved communities.

News Items

Links